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Abstract

A new algorithm is proposed for determining the saturation condition of a multi-component solution with respect to a ther-
modynamic system of phases that are in exchange equilibrium. The procedure is simple to implement, analytic in construction,
and guaranteed to converge. The algorithm finds application in the computational thermodynamics of equilibrium phase rela-
tions in multi-component systems and provides a means of discriminating computed assemblages that are potentially metasta-
ble from those that are globally stable. The algorithm can be applied to any chemical system of arbitrary complexity.
! 2012 Elsevier Ltd. All rights reserved.

1. INTRODUCTION

There are many challenges associated with performing
computational thermodynamics in systems with multi-com-
ponent solution phases, but perhaps the most daunting is
identification of the potential phases and their compositions
in the equilibrium assemblage. By contrast, in systems com-
prising a collection of pure phases, this exercise is straight-
forward and the resulting equilibrium assemblage is
uniquely defined; most computational procedures for sin-
gle-component phase collections start with the unlikely
assumption that all possible phases are present in the sys-
tem, and optimize this initial guess using linear program-
ming (e.g., simplex method) to achieve a minimal energy
solution (Smith and Missen, 1982). Importantly, in such a
procedure the numerical algorithm retains compositional
information about the universe of possible phases at each
numerical step in the evolution to the minimum, with opti-
mality prescribed by the molar abundance (which may be
zero) of each phase in the final assemblage. If the phases
in the equilibrium system are solutions of varying composi-
tion however, a complication emerges: In the course of

energy minimization a particular solution phase may disap-
pear from the assemblage, indicated by the molar abun-
dance of all of its components tending towards zero; in
subsequent numerical steps to the energy minimum, as fur-
ther phases are discarded and compositions of remaining
phases are adjusted, the earlier discarded phase may reenter
the assemblage to become a member of the final equilibrium
configuration of phases. In this scenario, the complication
is how to determine the stability of any discarded solution
phase so that it may be evaluated for reintroduction into
the assemblage? This procedure is not trivial because, un-
like the single component case, simply adding a tiny
amount of the phase to the assemblage and noting the
direction of change of total energy does not apply, given
that the solution phase composition is not known a priori.
Randomly selecting a composition to evaluate potential
solution phase inclusion simply does not work because
most such random guesses will be metastable, and Monte
Carlo-like evaluation of potential compositions is too
time-consuming for phases with four or more components.
The answer to this dilemma is an algorithmic procedure
that correctly determines the relative stability of a given
phase vis-a-vis a collection of (meta)stable phases. In gen-
eral, such procedures are referred to as saturation state
algorithms because they are derived historically from
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methods utilized in determining the relative saturation con-
dition of solid phases in potential association with aqueous
solution (Helgeson et al., 1970; Reed, 1982).

Most saturation state algorithms take advantage of the
presence of a (meta)stable phase that contains all of the
thermodynamic components in the system. An aqueous
fluid or a magmatic liquid are excellent examples of such
phases. We denote these omni-component phases, using
the Latin prefix omni, meaning everything. Strictly speak-
ing, all phases are omni-component phases, but in practical
computations compositions of solutions are restricted by
available thermodynamic data and solution models. Impor-
tantly, as will be demonstrated below, an omni-component
phase can always be defined for a collection of arbitrary
phases in exchange equilibrium (metastable or stable), so
algorithms that rely on the existence of an omni-component
phase for determining saturation state conditions are uni-
versally applicable.

In this paper, a new algorithm is presented for determi-
nation of the saturation state of a phase relative to an omni-
component phase. While many such algorithms have been
proposed (e.g., Reed, 1982; Ghiorso, 1994) and utilized in
practice (Ghiorso and Sack, 1995; Ghiorso et al., 2002;
Tirone et al., 2009), the algorithm developed below is
unique in that it does not rely on the solution of non-linear
systems of equations, a numerical procedure which may be
time-consuming or yield locally minimal (i.e. potentially
incorrect) solutions. Nor does the algorithm proposed be-
low require an initial numerical guess. Both of these fea-
tures are advantages in that together they foster
achievement of a solution that is globally convergent. The
paper begins with a statement of the new algorithm, then
applies the algorithm to thermodynamic systems with a
stable or metastable omni-component phase, and finally
addresses the issue of algorithm convergence and other
practical matters of implementation.

2. SATURATION STATE ALGORITHM –
DESCRIPTION

Consider an omni-component (oc) phase with n ther-
modynamic components. We pose the problem: What is
the saturation state of a target-phase relative to a specified
composition of the oc-phase at some given temperature
(T) and pressure (P). The problem is illustrated in Fig. 1
for a model two component system. Composition is de-
noted on the abscissa as mole fraction (X) of the second
component in solution, and the molar Gibbs free energy
(G) is plotted on the ordinate. The specified composition
of the oc-phase is labeled “L.” The dashed line is tangent
to the Gibbs energy curve at “L,” and for the illustrated
cases, this tangent line projects to lower Gibbs free ener-
gies than those of the target-phase. Consequently, the tar-
get-phase is undersaturated relative to the chosen
composition of the oc-phase. In quantitative terms, the de-
gree of undersaturation is given by the chemical affinity
(A), which is the minimal energy difference between the
projected tangent line from the oc-phase and the Gibbs
free energy curve of the target-phase for some composition
where the slopes of both energy curves are identical.

Determining the saturation state of a target-phase is there-
fore an exercise in finding the target-phase composition
that satisfies these geometrical requirements in energy-
composition space. Although Fig. 1 illustrates this geo-
metrical construction for a two-component case, the situ-
ation readily generalizes to Gibbs free energy surfaces
with tangent hyperplanes and gradient vectors for arbi-
trary numbers of components.

The geometrical condition of the previous paragraph is
embodied in the set of thermodynamic equations

li;oc-phase ¼ Aþ li;target-phase ð1Þ

for all c components of the target-phase, where l denotes
the chemical potential, which is indexed on i, and 1 6 i 6 c,
c 6 n. For simplicity and without loss of generality both
phases are described with the same component stoichiome-
try; in practice a mapping may be required to balance stoi-
chiometric differences between difference sets of
components adopted for each phase. Alternately, the meth-
od of Lagrange multipliers may be utilized to construct the
left-hand-side of (1), as described below in Section 3. Note
that in Eq. (1) the chemical affinity is not indexed on i,
implying that the disequilibrium energy offset is identical
for all components of the target-phase. The proof of this re-
sult is given by Ghiorso (1987, Appendix b). If the affinity is
zero, then the phases are mutually tangent (Fig. 1) and Eq.
(1) reduces to the standard Gibbs requirement of heteroge-
neous phase equilibrium.

Eq. (1) expands to

li;oc-phase ¼ Aþ lo
i;target-phase þ RT ln ai;target-phase ð2Þ

where a denotes the activity of a component in the target-
phase and the superscript zero refers to the standard state
condition of unit activity of the pure substance at any
T and P. The activity may be further expanded into a
product of mole fraction and activity coefficient (i.e.,
ai;target-phase ¼ X ici), which permits Eq. (2) to be rearranged
as:

li;oc-phase % lo
i;target-phase % RT ln ci ¼ Ui ¼ Aþ RT ln X i ð3Þ

In Eq. (3) the activity coefficient terms are brought to the
left-hand-side of the expression and are included in the def-
inition of Ui.

2.1. Saturation state algorithm

The saturation state algorithm proceeds as follows:

(I) Assume initially that the target-phase is ideal, which
implies all RT lnci are zero. This assumption renders
Ui independent of Xi (Eq. (3)).

(II) Form difference expressions from Eq. (3), as

Uiþ1 % Ui ¼ RT ln X iþ1 % RT ln X i

which may be rearranged to give

ri ¼ exp
Uiþ1 % Ui

RT

! "
¼ X iþ1

X i
ð4Þ
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(III) Solve analytically for X1 using an expression derived
by repeated application of Eq. (4) to the closure con-
straint on the sum of mole fractions,

X 1 þ X 2 þ X 3 þ . . .þ X c%1 þ X c ¼ 1

as:

X 1þ r1X 1þ r1r2X 1þ . . .þðr1r2 . . .rc%2ÞX 1

þðr1r2 . . .rc%2rc%1ÞX 1¼ 1

X 1¼
1

1þ r1þ r1r2þ . . .þðr1r2 . . .rc%2Þþðr1r2 . . .rc%2rc%1Þ
ð5Þ

(IV) Solve analytically for the remaining Xi by repeated
substitution of Eq. (4):

X i ¼ ðri%1ri%2 . . . r2r1ÞX 1

(V) Solve for the affinity by appropriately transforming
Eq. (3):

A ¼ U1 % RT ln X 1

(VI) Use values for the X 1 . . . X c calculated in steps III and
IV to evaluate RT lnci for the target-phase. Treat
these quantities as constants and from them calculate
new values of Ui using Eq. (3).

(VII) Preserve the current values X 1 . . . X c and A. Perform
algorithmic steps II through VI again. Evaluate con-
vergence criteria: Are the newly computed values of
X 1 . . . X c and A “sufficiently” close to the preserved
values from the last iteration? If not, go to step VI.
If so, exit the procedure. On exit, if the affinity is a
positive quantity, the target-phase is undersaturated.
If negative, supersaturated.
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Fig. 1. Illustration of saturation state algorithm for a target phase referenced to an omni-component phase (oc) of composition XL. The
Gibbs free energies of the two phases are illustrated by the heavy solid curves. The dashed line labeled “tangent line” is tangent to the oc-phase
at XL. It has the same slope as the tangent to the target phase at XF. 1, 2, etc. refer to the sequence of intermediate solutions which converge to
F. The chords labeled Ai are geometrical representations of the chemical affinity. The dotted curves are “ideal mixing” approximations of the
target phase, as described in the text. The upper and lower panel differ only in location of XL.
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Note: When implementing the algorithm for target-
phases that have configurational entropies of mixing that
reflect site multiplicity (i.e., a symmetrically equivalent sites
in the formula unit), convergence may be accelerated by
modifying Eq. (3) and its dependencies as: li;oc-phase%
lo

i;target-phase % RT ln ci ¼ Ui ¼ Aþ aRT ln X i.
The algorithm works by taking advantage of the fact

that the solution of the saturation state problem is analytic
if the target phase is ideal (Ghiorso, 1994). By holding the
molar excess Gibbs free energies (RT lnci) constant and
transferring their contribution onto the standard state term
(i.e. left-hand-side of Eq. (3)), a succession of pseudo-ideal
systems are evaluated until the final one gives a result that is
identical to the desired solution for the thermodynamically
non-ideal target phase. This succession of solutions can be
seen visually in Fig. 1. Two cases are evaluated in the figure
corresponding to saturation state conditions for a target-
phase that exhibits a large miscibility gap. The dotted curve
labeled “1” is the molar Gibbs free energy of solution for
the equivalent hypothetical ideal target-phase (Algorithmic
step I), and the point/chord labeled “1” and “A1” are the
algorithmic solutions for the saturation condition. The dot-
ted curve labeled “2” is the “ideal” molar Gibbs free energy
of solution for the case where the standard state properties
of the target-phase are adjusted by the RT lnci calculated
from the composition at “1.” Note that the dotted curve
“2” matches by construction the actual Gibbs curve of
the target-phase at composition “1.” The composition at
“2” and the affinity, A2, are solutions of the saturation state
algorithm (steps II through VI) applied to curve “2;” note
that composition “2” is closer to the ultimate solution (at
“F”) than composition “1.” Repeated construction of pseu-
do-ideal Gibbs curves leads to a succession of approxima-
tions which terminate when the pseudo-ideal curve is
topologically identical to the actual target-phase Gibbs
curve in the local compositional interval about the satura-
tion surface solution. In the figure this solution is denoted
by the composition at point “F” along with the associated
affinity, labeled “AF.” The pseudo-ideal Gibbs free energy
curve for this point is also illustrated for reference.

The algorithm described and illustrated above converges
rapidly, and has been evaluated for target-phases with up to
seven components. It is more robust than the algorithm of
Ghiorso (1994; later applied in Asimow and Ghiorso, 1998)
which relies on the solution of sets of non-linear equations.
The one apparent restriction is that the algorithm requires
all component mole fractions of the target-phase to be po-
sitive quantities. As many thermodynamic solutions violate
this assumption, it is necessary to introduce a modification,
which is described in the next section.

2.2. Saturation state algorithm – Modifications for reciprocal
solutions

Often the implicit assumption of positive mole fractions
of component concentrations in the target-phase is violated.
Typically this situation occurs in reciprocal solutions (Wood
and Nicholls, 1978), where the number of natural endmem-
bers of the solution exceeds the number of thermodynamic
components. Quadrilateral pyroxenes serve as a nice exam-

ple of a reciprocal solution. These pyroxenes have composi-
tions with natural endmembers CaMgSi2O6 (Di),
CaFeSi2O6 (Hd), Mg2Si2O6 (En), and Fe2Si2O6 (Fs). Often
the natural endmembers of a reciprocal solution are referred
to as solution species and in this case the composition of a
pyroxene interior to the quadrilateral can be described in
terms of mole fractions of species (i.e., X s

Di; X s
Hd;

X s
En; X s

Fs) or alternately mole fractions of thermodynamic
components, of which there are three, and we might choose
X c

Di; X c
Hd; and X c

En. Note that if there are s species and c
components, s P c, and that the species mole fraction are
always positive. Note also that with this choice of compo-
nents, compositions more Fe-rich than those along the En-
Hd join will of necessity have negative mole fractions of
the component Di (e.g. Fs: X c

Di ¼ %2; X c
Hd ¼ 2; X c

En ¼ 1).
Numerical procedures in computational thermodynam-

ics often avoid the use of species concentrations because
such quantities are not linearly independent. There is, how-
ever, no such requirement of linear independence in manip-
ulating the mole fractions in the algorithm described
previously, so species mole fractions can readily be substi-
tuted for component mole fractions, and the saturation
state condition evaluated in “species”-space rather than
“component”-space. For example, in the case of the quad-
rilateral pyroxenes the target-phase thermodynamic model
would provide values of lDi; lHd; and lEn. The required
value of lFs for the saturation state algorithm would be ob-
tained from the condition of homogeneous equilibrium:
lFs = lEn + 2lHd % 2lDi, which must always hold. The
algorithm would yield X s

Di; X s
Hd; X s

En; and X s
Fs, which

could then be mapped back to the component set:

X c
Di ¼ X s

Di % 2X s
Fs

X c
Hd ¼ X s

Hd þ 2X s
Fs

X c
En ¼ X s

En þ X s
Fs

By defining a suitable set of natural endmembers, the satu-
ration state algorithm described above can be utilized with
target-phases that posses the properties of reciprocal
solutions.

3. GENERALITY OF THE OMNI-COMPONENT
PHASE

It is not uncommon for a model thermodynamic system
to contain an omni-component phase. The liquid phase in a
magma certainly qualifies as does the aqueous phase in a
fluid-rock system, or the condensing gas phase of the early
solar nebula. In all these cases application of the saturation
state algorithm described above is straightforward, and
such an algorithm can form an integral part of a computa-
tional scheme to evaluate the phase proportions and com-
positions in the system at equilibrium. For calculation of
phase equilibria in systems that do not contain a model
omni-component phase, it is desirable to construct a meta-
stable or hypothetical equivalent that functions as a proxy
for saturation surface evaluation. Asimow and Ghiorso
(1998) advocate this notion and their use of a metastable
pseudo-liquid phase is integral to the calculation of subsol-
idus phase relations in magmatic systems (e.g. MELTS,
pMELTS). The method of Asimow and Ghiorso (1998)
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can be generalized for arbitrary collections of phases that
are in exchange equilibrium.

A collection of phases are in exchange equilibrium if at a
given bulk composition, T and P, the phase proportions
and compositions define a local minimum in the Gibbs free
energy of the system. This state is only equivalent to the
global equilibrium state if all potential phases not currently
included in the assemblage are undersaturated relative to the
phases in the assemblage. For any collection of phases in
exchange equilibrium, the Gibbs–Duhem theorem
(Prigogine and Defay, 1954) provides a means of stipulating
a set of system chemical potentials of appropriate thermo-
dynamic components; if the system is not in exchange
equilibrium, such potentials have no meaning nor defini-
tion. For example, suppose the bulk composition of a sys-
tem may be expressed as 25% spinel of composition Sp50

(0.5 MgAl2O4 + 0.5 FeAl2O4), 25% olivine of composition
Fo90 (0.1 Fe2SiO4 + 0.9 Mg2SiO4) and 50% quartz (SiO2).
At a given T and P, this assemblage may be metastable
relative to the assemblage spinel–olivine–orthopyroxene,
or spinel–orthopyroxene–quartz, but regardless of this
possible metastability, the Fe/Mg ratios of the spinel and
olivine will have values that zero the free energy change
of the exchange reaction

2MgAl2O4 ðspnÞ þ Fe2SiO4 ðolvÞ
¼ 2FeAl2O4 ðspnÞ þMg2SiO4ðolvÞ ð6Þ

if the assemblage is in local equilibrium. Under this special
condition the chemical potentials of SiO2, Al2O3, FeO
and MgO are uniquely defined by application of the
Gibbs–Duhem theorem, which requires lSiO2

; lAl2O3
;

lFeO; lMgO to satisfy simultaneously:

lspn
MgAl2O4

¼ lMgO þ lAl2O3

lspn
FeAl2O4

¼ lFeO þ lAl2O3

lolv
Mg2SiO4

¼ 2lMgO þ lSiO2

lolv
Fe2SiO4

¼ 2lFeO þ lSiO2

lqtz
SiO2
¼ lSiO2

ð7Þ

because exchange equilibrium (Eq. (6)) dictates that

2lspn
FeAl2O4

þ lolv
Mg2SiO4

% 2lspn
MgAl2O4

% lolv
Fe2SiO4

¼ 0 ð8Þ

Values of chemical potentials consistent with Eqs. (7)
and (8) may be used to construct the Gibbs free energy
(and related thermodynamic properties) of a hypothetical
omni-component phase, whose composition is equivalent
to the bulk composition of the system. This omni-compo-
nent phase may in turn be utilized to evaluate saturation
state conditions for other potential phases that might pop-
ulate the system at equilibrium, e.g. orthopyroxene. If all
possible potential phases are undersaturated relative to this
hypothetical omni-component phase, then the true equilib-
rium assemblage has been found. If not, the indicated
supersaturated phase may be introduced to the assemblage,
the Gibbs free energy minimized, which will place the re-
vised assemblage in exchange equilibrium, and the proper-
ties of a new hypothetical omni-component phase
computed, from which, the true global equilibrium state
of the system may be reevaluated. This process is robust,

in the sense that from any initial guess to the compositions
and proportions of phases in a system, an omni-component
phase can be constructed for each local equilibrium step to
the global minimum, and the convergence of local minima
to the global minimum can be evaluated to verify the
uniqueness of the final assemblage.

4. COMMENTS AND CONCLUSIONS

The saturation state algorithm described in this paper
can always be applied to test for attainment of the global
minimum in the energy of a thermodynamic system. In
practice, a test for global convergence of this kind should
always be applied in every calculation whose aim is to
establish the identity and proportions of phases in an equi-
librium assemblage. Such testing is performed by the
MELTS family of calculators (Ghiorso and Sack, 1995;
Ghiorso et al., 2002; Gualda et al., 2012) as well as Phase-
Plot (phasePlot.org), which operates on thermodynamic
data/model collections that may not contain an explicit
omni-component phase. The algorithms of Brown and
Skinner (1974), Connolly and Kerrick (1987), Voňka and
Leitner (1995), and Tirone et al. (2009) also implement tests
to guarantee that all potential solution phases are present in
the final equilibrium phase assemblage. Failure to imple-
ment saturation surface checking of the kind described here
can lead to apparent equilibrium phase assemblages that
are in reality metastable. In particular, algorithmic proce-
dures for the computation of phase equilibrium that are ini-
tialized by inclusion of all possible phases, and proceed by
adjusting phase composition and proportions and discard-
ing unstable phases en route to an energy minimum, may
not attain the global minimum. The numerical procedures
described by Connolly (1990) and Stixrude and Lithgow-
Bertelloni (2011) fail to perform saturation state testing
and potentially may pre-maturely converge to a metastable
assemblage. The saturation state of all discarded phases
must be evaluated prior to a declaration that the equilib-
rium assemblage has been achieved, as there is no guarantee
that a phase discarded once may not re-stabilize again after
other phase composition/proportion adjustments take
place. The computational path to equilibrium is irreversible
and littered with local minima ready to fool the unsuspect-
ing numerical algorithm into a false sense of security. Only
in the case of pure component phases will the minima found
always be unique and global. Computational procedures in
systems containing solution phases should always employ
checks to insure global convergence. Fortunately, as every
model thermodynamic system in exchange equilibrium
either posses intrinsically or can be made to represent an
omni-component phase, the algorithm described in this pa-
per may be utilized to perform these tests and establish
definitively the global equilibrium state of the system.
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